
12th International Conference on Hydroscience & Engineering
Hydro-Science & Engineering for Environmental Resilience
November 6-10, 2016, Tainan, Taiwan.

Optimizing Two-Dimensional Flood Model with SSE and Concurrent Processing

Satoshi Yamaguchi1 , Shigehito Yamaho2
1. Center for Technology Innovation – System Engineering, R&D Group, Hitachi Ltd.

Kokubunji, Tokyo, Japan
2. ICT Solution Dept., Hitachi Power Solutions Co., Ltd.

Chiyoda, Tokyo, Japan

ABSTRACT

We optimized two-dimensional flood simulation model by using
Streaming SIMD Extension (SSE/SSE2) and Parallel Patterns Library
which enables concurrent processing, and made our program 2 to 4
times faster than normal implementation on a Personal Computer (PC)
with a multi-core Central Processing Unit (CPU). Because SSE and
concurrent processing is supported by almost all PCs, proposed method
is applicable to wide variety of PCs (laptop, desktop, workstation, etc.).

KEY WORDS: 2D flood model; shallow water equations; Streaming
SIMD Extensions (SSE); concurrent processing; dynamic domain
defining method (Dynamic DDM), urban flood resilience; DioVISTA
Flood.

INTRODUCTION

Two-dimensional (2D) flood model is an important tool in flood risk
management. The model outputs time series of flood depth distribution,
which is essential information for flood hazard mapping, flood warning,
emergency response, flood insurance programs, and so on. A variety of
software packages with the 2D flood modelling solvers are available on
the market (Néelz and Pender, 2013).

The accuracy of the flood modeling is drastically improved by using
high-resolution digital elevation model (DEM). High-resolution DEM
is already available in many areas. For example, Japanese major cities
have been covered by Light Detection and Ranging (LiDAR)-based
DEM with 5-m spatial resolution.

In order to use the high-resolution DEM, it is necessary to use a finer
grid in the flood modeling. A finer gird makes computational burden
heavier. For example, if we reduce the grid size to half, the number of
the grid is quadrupled. The model solver might require reducing its
time step length (dt) to half, which makes the number of calculation
steps double. As a result, computational burden becomes 8 times in this
case. A real situation is sometimes more serious. We sometimes want
to reduce the grid size from 50 m (typical conventional DEM resolution)
to 5 m (typical LiDAR-base DEM resolution), then computational
burden might become 1000 times.

Demand for rapid calculation methods is strong. Recent promising
approach is general-purpose computing on graphic processing units
(GPGPU). For example, Kalyanapu et al. (2011) implemented their
flood model in CUDA, and calculation time was drastically reduced

(1/88 to 1/80, compared to normal implementation in their test cases).
Several software packages also provide GPGPU version of flood model
solvers (Néelz and Pender, 2013).

Although utilizing GPGPU technology is a reasonable approach,
conventional personal computers (PCs), which are not suitable for
GPGPU, are still widely used in many organizations such as
engineering consulting firms, governmental agencies, and universities.
In this paper, we propose optimization methods without GPGPU. Our
objective is to develop a rapid flood model solver, which works on
conventional PCs.

PROPOSED METHODS

Governing Equations

2D shallow water equations are used. The equations are as follows:

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕 +

𝜕𝜕𝜕𝜕ℎ
𝜕𝜕𝜕𝜕 +

𝜕𝜕𝜕𝜕ℎ
𝜕𝜕𝜕𝜕 = 0 (1)

𝜕𝜕𝜕𝜕ℎ
𝜕𝜕𝜕𝜕 +

𝜕𝜕𝜕𝜕2ℎ
𝜕𝜕𝜕𝜕 +

𝜕𝜕𝜕𝜕𝜕𝜕ℎ
𝜕𝜕𝜕𝜕 = −𝑔𝑔ℎ

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 −

𝑔𝑔𝑛𝑛2𝜕𝜕√𝜕𝜕2 + 𝜕𝜕2

ℎ1 3⁄ (2)

𝜕𝜕𝜕𝜕ℎ
𝜕𝜕𝜕𝜕 +

𝜕𝜕𝜕𝜕𝜕𝜕ℎ
𝜕𝜕𝜕𝜕 +

𝜕𝜕𝜕𝜕2ℎ
𝜕𝜕𝜕𝜕 = −𝑔𝑔ℎ

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 −

𝑔𝑔𝑛𝑛2𝜕𝜕√𝜕𝜕2 + 𝜕𝜕2

ℎ1 3⁄ (3)

where, ℎ is the water depth, 𝜕𝜕 is the water surface elevation, 𝜕𝜕 is
the velocity in the 𝜕𝜕-direction, 𝜕𝜕 is the velocity in the 𝜕𝜕-direction, 𝜕𝜕
is the time, 𝑔𝑔 is the acceleration due to gravity, and 𝑛𝑛 is the
Manning’s roughness coefficient.

Fig. 1 Variable position in a staggered cell (ℎ: depth, 𝜕𝜕: velocity in the
x-direction, 𝜕𝜕: velocity in the y-direction, variable positions of i-th cell
are shaded)

12th International Conference on Hydroscience & Engineering
Hydro-Science & Engineering for Environmental Resilience
November 6-10, 2016, Tainan, Taiwan.

Rectangle cell is used for spatial discretization. Variables are allocated
as a staggered grid (Fig. 1). A first-order upwind finite difference
numerical scheme is used. Both the continuity and momentum
equations are solved explicitly. The time step length (dt) is
automatically determined to meet the Courant-Friedrich-Lewy (CFL)
stability condition.

Dynamic DDM

We use dynamic domain defining method (Dynamic DDM, Yamaguchi
et al., 2007). The Dynamic DDM automatically expands or shrinks the
calculation area during the simulation.

In conventional 2D flood model solver, we need to define calculation
domain in advance to the calculation (Fig. 2a). The calculation domain
must include the whole flood area (wet cells) and should exclude
non-flood area (dry cells). Since flood area and non-flood area are not
known until the calculation is finished, the user defines the domain by
trial and error.

In the Dynamic DDM, the calculation domain is automatically defined
to include all wet cells and to exclude dry cells during the simulation.
The modeling engine divides the entire space into subdomains. In Fig.
2b, subdomain consists of 4x4 cells. The modeling engine detects wet
cells (Fig. 2b1), and loads the subdomains in which those cells are
included (Fig. 2b2). Data in the subdomain is fetched from our spatial
database. The equations are solved only at the loaded subdomains.
Neighboring subdomains are automatically loaded when the water
reaches the current domain boundary (Fig. 2b3). A subdomain will be
unloaded when all the cells in the subdomain become dry. Thus, the
Dynamic DDM keeps nearly optimal calculation domain during the
simulation.

The efficiency of the Dynamic DDM depends on the number of cells in
a subdomain. Usage of smaller subdomain results in a better
optimization of the calculation domain but more frequent access to GIS
is required. Yamaguchi & Iwamura (2007) compared the calculation
time of flood simulation with 50 x 50 m cell for three size of
subdomain (16 x 16, 32 x 32, and 64 x 64 cells). They concluded that
when flood area is 1 – 100 km2 (400-40,000 cells), 32 x 32-cell
subdomain is most efficient. Therefore, we use the Dynamic DDM with
32 x 32-cell subdomain (Fig. 3). The ghost cells (copy of cells in
neighboring subdomain) are also shown as shaded cells.

Implementation Using SSE and PPL

We implemented the model using C++ in Microsoft Visual Studio 2015,
especially its intrinsic functions of Streaming SIMD Extensions (SSE
and SSE2) and Parallel Patterns Library (PPL).

The SSE and SSE2 were introduced in Intel Pentium III in 1999, and in
Intel Pentium 4 in 2001, respectively. Now almost all Windows PCs
support those instruction sets. Thus, we can take advantage of SSE and
SSE2 even on conventional PCs. SSE introduces a 128-bit width data
type __m128 which can contain four 32-bit floating point (float)
values. Though a normal arithmetic instruction processes single float
values at a time, a SSE arithmetic instruction processes single __m128
value at a time. Normal and SSE sample code are shown in Table 1 and
Table 2, respectively. We made SSE wrapper class (float4) by used
C++ operator overloading, and the SSE code is similar to normal code.
This facilitates code implementation and maintenance. Note that some

heavy arithmetic instructions such as square root (_mm_sqrt_ps) are
not used. Those instructions are replaced with as normal functions
(such as sqrt) and conducted only if the cell is wet. Thus the rate of
wet/dry cells in a subdomain affects the calculation time.

Fig. 2 Workflows of inundation models with (a) conventional method
and (b) our Dynamic Domain Defining Method (Dynamic DDM)

Fig. 3 Subdomain containing 32 x 32*cell

Table 1 Sample C++ code (normal version)
float var0[4] = { 0, 1, 2, 3 };
float var1[4] = { 4, 5, 6, 7 };
float var2[4];
for (int k = 0; k < 4; k++) {
 var2[k] = var0[k] + var1[k];
}

Table 2 Sample C++ code (SSE version)
#include <emmintrin.h>
__declspec(align(16)) float var0[4] = { 0, 1, 2, 3 };
__declspec(align(16)) float var1[4] = { 4, 5, 6, 7 };
__declspec(align(16)) float var2[4];
__m128 xmm0 = _mm_load_ps(var0);
__m128 xmm1 = _mm_load_ps(var1);
__m128 xmm2 = _mm_add_ps(xmm0, xmm1);
_mm_store_ps(var2, xmm2);

River Overflow point wet cell dry cell domain boundary

(1) t = 0 (2) t = 1 (3) t = 2

(1) t = 0 (2) t = 1 (3) t = 2
(a) Conventional method

(b) Dynamic DDM

isize

jsize

__m128

Ghost cell

128 bit

12th International Conference on Hydroscience & Engineering
Hydro-Science & Engineering for Environmental Resilience
November 6-10, 2016, Tainan, Taiwan.

Because each subdomain is independent to other subdomains, we can
concurrently process all subdomains. Unlike OpenMP, the PPL
provides a dynamic scheduler that adapts to available resources and
adjusts the degree of parallelism as workloads change. The PPL creates
threads, and a work task (solving the equations in a subdomain) is
assigned to a thread. The PPL dynamically moves work tasks which
have not yet started to other threads which run out of work tasks. Thus
all work tasks finish in the least overall time.

CASE STUDY

System Integration

We integrated the model into our flood modeling software (DioVISTA
Flood), which is composed of (a) four-dimensional geographic
information system (GIS), (b) spatial database containing worldwide
maps, satellite image, digital elevation data, land-use data, and online
maps available through the internet, and (c) modeling engine which
provides a distributed runoff model, a one-dimensional river model, an
empirical levee failure model, and the two-dimensional flood model.
Yamaguchi et al. (2012) illustrates the system in detail.

Experiment Setting

Calculation time of the model was measured by three kinds of PCs
(laptop, desktop, and workstation). Each PC has different number of
CPU cores (2, 4, and 6). Because of Hyper-Threading each core has
two virtual cores. The laptop PC is lightweight (1.03 kg) and thin (13.2
to17.9 mm), and highly portable. As shown in Table 3, it has no
graphic card suitable for GPGPU. The desktop PC with mini tower
computer case is newest one in the three PCs (its manufacturing year is
2016, see Table 4). The workstation is in middle tower computer case
(Table 4).

We used the flood event in Fukui flood disaster (2004, Japan). In this
event, a 54-m length section of levee was breached on July 18, and 2.3
km2 area was flooded. We already have validated our model
(Yamaguchi & Iwamura, 2007). The comparison between the
simulation result and the site investigation conducted by Yamamoto
(2007) is shown in Fig. 4.

RESULT AND DISCUSSIONS

We simulated the flood event for 10 hours in 10-m grid. The number of
cells and the time step length were automatically adjusted. The results
were saved as a binary formatted file. We saved the result in every 10
minutes, so 600 time-slices were saved. The file size was 45.3 MB.

Speedup by using SSE is shown in Fig. 5. The speedup effect is x1.45
to x1.63, and it is almost independent on the PC specs. Speedup by PPL
is shown in Fig. 6. The more CPU cores we use, the higher the speedup
effect becomes. Multiplying speedup by SSE and speedup by PPL, and
you get a close value shown in Fig. 7. This suggests that the effect of
SSE is almost independent on the effect of PPL. The calculation time
(Fig. 8) indicates that the flood event of 2.3 km2 flood extent in 10-m
grid in 10 hours were simulated in 385 /179 seconds on the laptop, 262
/65 seconds on the desktop, and 406 /93 seconds on the workstation by
normal /optimized versions of the solver, respectively.

Our method is similar to Castro et al (2008). They divided the
calculation domain into multiple subdomains using domain
decomposition method (DDM). Arithmetic operations in a subdomain
were implemented by SSE. Solving multiple subdomains is parallelized
by using Message Passing Interface (MPI). Major differences between
our method and theirs are dividing method of the calculation domain
and parallelization with/without load balancing. They used DDM, and
we used Dynamic DDM. Dynamic DDM dynamically changes the
number of subdomains. In addition, as we mentioned above, the rate of
wet/dry cells in a subdomain also affects the calculation time of
subdomain in our method. So the load balancing mechanism provided
by PPL is important for our implementation.

Fig. 4 Comparison between the simulation result with 10-m grid size
and the site investigation conducted by Yamamoto (2007).

Table 3 Spec of laptop computer (PC1)
CPU Core 2
CPU Intel® Core™ i7-5500U CPU @ 2.40GHz
Memory 8.0 GB
GPU Intel HD Graphics 5500
OS Windows 8.1 Pro Update, 64-bit
Storage SSD 256 GB x 1, PCI Express x 4
Computer Model VAIO Pro 13 mk2
Manufacturing year 2015

Table 4 Spec of desktop computer (PC2)
CPU Core 4
CPU Intel® Core™ i7-6700 CPU @ 3.4GHz
Memory 16.0 GB
GPU NVIDIA GeForce GTX 960
OS Windows 7 Professional, 64-bit (Service Pack 1)
Storage Seagate Desktop HDD ST500DM0
Computer Model EPSON Endeavor MR7400
Manufacturing year 2016

Table 5 Spec of workstation (PC3)
CPU Core 6
CPU Intel® Core™ i7 CPU X 990 @ 3.47GHz
Memory 12.0 GB
GPU NVIDIA GeForce GTX 570
OS Windows 10 Pro, 64-bit
Storage Hitachi HDS721010CLA332
Computer Model Mouse Computer MDV-AGG9230X
Manufacturing year 2011

Site investigation
Simulation

0 1 km

12th International Conference on Hydroscience & Engineering
Hydro-Science & Engineering for Environmental Resilience
November 6-10, 2016, Tainan, Taiwan.

CONCLUSIONS

1. We proposed an optimization method of two dimensional flood

model using Streaming SIMD Extensions (SSE/SSE2) and
concurrent processing. We implemented the model using
programing language Microsoft Visual C++, especially its
intrinsic functions of SSE and Parallel Patterns Library (PPL).
The normal code and optimized code are almost identical by
using of C++ operator overloading. This facilitates code
implementation and maintenance.

2. We evaluated the optimized effect on three personal computers;
laptop PC, desktop PC, and workstation. The normal /optimized
versions simulated the 10-hours event in 385 /179 seconds on the
laptop, 262 /65 seconds on the desktop, and 406 /93 seconds on
the workstation. Speedup effects are x2.16 on the laptop, x4.04
on the desktop, and x4.39 on the workstation. We conclude that
optimization with SSE and concurrent processing is effective in
speeding up the solver on variety of PCs.

ACKNOWLEDGEMENTS

The application shown in this paper is DioVISTA Flood Version 3.0 by
Hitachi Power Solutions Co., Ltd. We used GSI Maps provided by The
Geospatial Information Authority of Japan (GSI).

REFERENCES

Castro, M. J., García-Rodríguez, J. A., González-Vida, J. M., & Parés, C.

(2008). Solving shallow-water systems in 2D domains using Finite
Volume methods and multimedia SSE instructions. Journal of
Computational and Applied Mathematics, 221(1), 16-32.

Kalyanapu, A. J., Shankar, S., Pardyjak, E. R., Judi, D. R., & Burian, S. J.
(2011). Assessment of GPU computational enhancement to a 2D flood
model. Environmental Modelling & Software, 26(8), 1009-1016.

Néelz, S. & Pender, G. (2013). Benchmarking the latest generation of 2D
hydraulic flood modelling packages, Environment Agency.

Yamaguchi, S. & Iwamura, K. (2007). Fast Flood Simulation Method
Using Dynamic DDM. IPSJ Transaction on Mathematical Modeling
and Its Application, 48 (SIG 6 TOM 17), 92-103. (in Japanese)

Yamaguchi, S., Ikeda, T., Iwamura, K., Naono, K., Ninomiya, A., Tanaka,
K., & Takahashi, H. (2007). Development of GIS-based
flood-simulation software and application to flood-risk assessment. In
2nd IMA International Conference on Flood Risk Assessment.

Yamaguchi, S., and Ikeda, T. (2010). Automatic linking and fast
calculation methods of 1D/2D coupled model, In Proceedings of 9th
International Conference on HydroScience and Engineering (ICHE),
Chennai, India.

Yamaguchi, S., and Ikeda, T., & Yamaho, S. (2012). Flood risk
assessment system for major metropolitan areas in Japan. In
Proceedings of 10th International Conference on Hydroinformatics
(HIC), Hamburg, Germany.

Yamamoto, H. (2007). Characteristics of Flood Disaster by the Fukui
Heavy Rainfall on July 18, 2004 at the Fukui city area on the left
bank of the Asuwa River, Fukui Prefecture. Journal of Japan Society
for Natural Disaster Science, 26(1), 41-53. (in Japanese)

Fig. 5 Optimized effect by using Streaming SIMD Extensions (SSE).

Fig. 6 Optimized effect by using Parallel Patterns Library (PPL).

Fig. 7 Optimized effect by using SSE and PPL.

Fig. 8 Calculation time comparison of normal implementation with
optimized implementation by using SSE and PPL.

PC 1 PC 2 PC 3
1.45 1.60 1.63

0

1

2

3

4

5

Sp
ee

du
p

ra
te

Speedup by SSE

PC 1 PC 2 PC 3
1.67 2.66 3.35

0

1

2

3

4

5

Sp
ee

du
p

ra
te

Speedup by PPL

PC 1 SSE+PPL PC 2 SSE+PPL PC 3 SSE+PPL
2.16 4.04 4.39

0

1

2

3

4

5

Sp
ee

du
p

ra
te

Speedup by SSE + PPL

PC 1
normal

PC 1
SSE+PPL

PC 2
normal

PC 2
SSE+PPL

PC 3
normal

PC 3
SSE+PPL

386 179 263 65 406 93

0
50

100
150
200
250
300
350
400
450

Ca
lc

ul
at

io
n

tim
e

[s
ec

]

Calculation time

sp
ee

du
p

sp
ee

du
p

sp
ee

du
p

	Introduction
	Proposed methods
	Governing Equations
	Dynamic DDM
	Implementation Using SSE and PPL

	Case Study
	System Integration
	Experiment Setting

	Result and Discussions
	Conclusions
	Acknowledgements
	References

